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ABSTRACT

In this paper, we investigate several conditions on a commutative ring # which are
related to root closure. These conditions involve internal divisibility conditions on elements
of R rather than closedness conditions on elements of the total quotient ring of K.
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ON ROOT CLOSURE IN COMMUTATIVE RINGS

1. INTRODUCTION

Let R be a commutative ring with 1 and total quotient ring T(R), and let n > 1 be an integer. Then R is
n-root closed if whenever " € R for some z € T(R), then z € R; and R is root closed if it is n-root closed for
alln > 1. Also, R is (2,9)-closed if whenever z?,2% € R (equivalently, z" € R for all sufficiently large integers
n > 1) for some z € T(R), then z € R. If R is n-root closed for some n > 2, then R is also (2,3)-closed. However,
even for integral domains, a (2,3)-closed ring need not be n-root closed for any n > 2 [1, Example 2.3]. Following
Swan [2], we say that R is seminormal if whenever a? = b3 for a,b € R, then a = ¢® and b = ¢ for some
¢ € R. Note that a seminormal ring is reduced. The importance of seminormality is that Pic(R[X]) = Pic(R) if
and only if R/Nil(R) is seminormal [2, Theorem 1]. A seminormal ring is (2,3)-closed, but not conversely (see
Example 3.1). A reduced ring R with only a finite number of minimal prime ideals is (2,3)-closed if and only if it
is seminormal (cf. [3, Theorem 2}). In particular, an integrai domain is seminormal if and only if it is (2,3)-closed
(¢f. [4, Theorem 1.6]). For related results on seminormal rings and their relationship to (2,3)-closedness, see
[5, Section 3]. '

In [5], we investigated several internal divisibility conditions on a ring R related to seminormality. In this
paper, we extend this study to ring-theoretic properties related to root closure. One of the central themes in
this paper, and also in [5-9], is to generalize the study of certain “closedness” properties in integral domains to
the context of commutative rings with zerodivisors and to replace these “closedness” conditions on elements of
T'(R) by divisibility conditions on elements of R. Specifically, we replace (a/b)" € R fora € R,b € R— Z(R) by
b*a”™ in R for a,b € R, and we allow b € Z(R). Unlike the usual “closedness” properties, these new divisibility
conditions need not hold for total quotient rings. Also, conditions which are equivalent for integral domains may
be quite different for rings with zerodivisors. Many of these conditions force R to be reduced; so, as in [5], much
of our emphasis is on subrings of direct products of integral domains.

In the second section, we relate additively regular rings to root closed, (2,3)-closed, and integrally closed
rings. The third section studies several conditions related to root closure. In the fourth section, we generalize
and investigate the concepts of strongly radical ideal and rooty ring from the integral domain case, as in [10-12],
to rings with zerodivisors. The final section gives another generalization of root closed rings, strongly radical
ideals, and rooty rings by replacing (a/b)" € Rfor a € R,b€ R~ Z(R) by b”|a" in R for a € R,b € R~ Nil(R).

Throughout, all rings will be commutative with 1 # 0. When we say that a ring A is a subring of a ring B,
we mean that 4 and B have the same identity element. For a ring R, we denote its set of zerodivisors by Z(R),
its ideal of nilpotent elements by Nil(R), its group of units by U(R), its total quotient ring by T(R), and its
integral closure (in T(R)) by R'. As usual, z € R is called a regular element if z is not a zerodivisor of R. Also,
X and Y will always denote indeterminates. Any undefined terminology or notation is standard, as in [13-15].
See [16] for a recent survey article on root closure in commutative rings. 4

2. ADDITIVELY REGULAR RINGS AND ROOT CLOSURE

A ring R is called additively regular if for each z € T(R), there is a Y € R such that z + y is a regular element
of T(R). If Z(R) is a finite union of prime ideals, then R is additively regular [14, Theorem 7.2]. In particular,
Noetherian rings and reduced rings with only a finite number of minimal prime ideals are additively regular. We
start with the following result,

Lemma 2.1. The following statements are eguivalent for a ring R.

(1) R is additively regular.
(2) Foreacha€ Rbe R~ Z(R), andn > 1, there is a ¥ € R such that a + yb™ is a regular element of R.
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Proof.

(1) = (2): Letaec Rbe R~ Z(R), and n > 1. Since a/b™ € T(R) and R is additively regular, a/b" + yisa
regular element of T(R) for some y € R. Hence a + yb" = (a/b™ + y)b™ is a regular element of R.

(2)= (1) Let z =a/be T(R) for some a € Rand b€ R — Z(R). Then a + yb is a regular element of & for
some y € R. Thus 2 +y = a/b+ y = {a + yb)/b is a regular element of T(R). .

Our next three results show that if R is additively regular (for example, Noetherian), then R is root {resp.,
n-root, (2,3)-, integrally) closed if and only if R is root (resp., n-root, (2,3)-, integrally) closed for the group of
units of 7'(R). The (2,3)-closed case has been studied in {5, Section 3]; in particular, the (2,3)-closed case of
Proposition 2.5 follows from [5, Theorem 3.3].

Proposition 2.2. The following statements are equivalent for an additively regular ring R.
(1) R is root closed.
(2) If z™ € R for some z € U(T(R)) and n > 1, then z € R.

Proof.

(1} = (2) is clear.

(2) = (1): Let x = a/b € T(R) for some a € Rand b € R — Z(R). Suppose that 2 = a™/b" € R for some
n > 1. Since R is additively regular, a + yb™ is a regular element of R for some y € R by Lemma 2.1. Hence
c=(a-+yb")/b € U(T(R)). Since a™/b" € R, it is easy to verify that ¢" € R. Since ¢ € U{T{R)) and ¢* ¢ R,
by hypothesis ¢ = (a + yb") /b = a/b+ yb"~! € R. Thus z = a/b € R. 0

Proposition 2.3. The following statements are equivalent for an additively regular ring R.
(1) R is (2,8)-closed.
(2) If 2*,2° € R for some = € U(T(R)), then z € R.

Proof.

{1} = (2) is clear.

(2) = (1): Letz =a/be T(R) forsomea € Rand b € R— Z(R). Suppose that z*,2° € R. Since R is additively
regular, a + yb* is a regular element of R for some y € R by Lemma 2.1. Hence ¢ — (a + yb®)/b € U(T(R)).
Since a®/b? a3 /b3 € R, it is easy to verify that ¢®,¢® € R. Since ¢ € U(T{R})) and ¢? ¢* € R, by hypothesis
c=(a+yb’)/b=a/b+ybe R. Thus z =a/b € R. O

Proposition 2.4. The following statements are equivalent for an additively regular ring R.

{1} R is integrally closed.
(2) Ifz € R for some z € U(T(R)), then z € R.

Proof.

(2) = (1): Let z € R'. Since R is additively regular, z + y is a regular element of T'(R) for some y € R. Thus
z+y € UT(R)),and s +y € R sincez € R andy € R C R'. Hence z + ¥ € R by hypothesis, and thus
z € R. IR

Let D = [[,.; D;, where each D; is an integral domain, and let R be a subring of D. As in [5, Section 2], we
say that ¥ = (y;) € R is an extension of (or extends) z = (z;) € R, denoted by yEz, if y; = z; whenever z; # 0.
Recall that a commutative ring R is a subring of a direct product of integral domains if and only if it is reduced,
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and that R is a subring of a direct product of finitely many integral domains if and only if it is reduced with
only & finite number of minimal prime ideals (this observation gives another proof of Corollary 2.6).

Proposition 2.5. Let R be a subring of a direct product of integral domains. Suppose that each nonzero element
of R can be extended to a regular element of R. Then R is additively regular, and therefore R is root (resp.,
n-root, (2,8)-, integrally) closed if and only if R is root (resp., n-root, (2,3)-, integrally) closed for the group of
units of T(R).

Proof. Let = € T(R). We may assume that z # 0. Then z = a/b for some 0 # a = (a;) € R and
b = (&) € R~ Z(R). By hypothesis, there is a regular element y = (y;) € R such that yEa. We show
that a + b(y — a) is a regular element of R. If not, then ¢(a + b(y — a)) = 0 for some 0 # ¢ = (¢;) € R. Thus
c; = 0 whenever a; # 0, and hence ca = 0. Thus ¢b(y — a) = 0, and hence ¢{y — @) = 0 since b is regular. Thus
cy = ¢((y —a) +a) = ¢(y — a) + ca = 0, a contradiction since y is regular. Hence a + b(y — a) is a regular element
of R, and thus a/b+ (y — a) = (a + b(y — a))/b is a regular element of T(R). Hence R is additively regular. The
“therefore” statement follows from Propositions 2.2, 2.3, and 2.4. O

In particular, our next corollary applies if R is a reduced ring with only a finite number of minimal prime
ideals (for example, if R is a reduced Noetherian ring). The (2,3)-closed case is also in [5, Corollary 3.2].

Corollary 2.6, Let R be a subring of a direct product of finitely many integral domains. Then R is additively
regular, and therefore R is root (resp., n-root, (2,3)-, integrally) closed if and only if R is root (resp., n-root,
(2,3)-, integrally) closed for the group of units of T(R).

Proof. Since each nonzero element of R can be extended to a regular element of R when R is a subring of a
direct product of finitely many integral domains by [5, Lemma 2.5], we are done by Proposition 2.5. 0

Question 2.7. Do Propositions 2.2, 2.3, and 2.4 hold without the additively regular hypothesis?

3. REDUCED RINGS AND ROOT CLOSURE

In this section, we consider several conditions on a commutative ring R which are related to root closure. Let
n > 1 be an integer. We call R strongly n-root closed if whenever b"|a™ for some a,b € R, then bla; and we
say that R is strongly root closed if it is strongly n-root closed for all n > 1. We call R strongly (2,3)-closed if
whenever b%[a? and b3|a® (equivalently, b”|a™ for all sufficiently large integers n > 1) for some a,b € R, then bla.
In each case, we have just replaced (a/b)” € R for a € R,b € R — Z(R) by b™|a”™ in R, and we have allowed
b € Z(R). These definitions are equivalent to the earlier definitions when R is an integral domain.

It is easy to show that a direct product R = [],., R; of rings is strongly root (resp., n-root, (2,3)-) closed if
and only if each R; is strongly root (resp., n-root, (2,3)-) closed. Also, if R is strongly root (resp., n-root, (2,3)-)
closed, then Rs is also strongly root (resp., n-root, {2,3}-) closed for any multiplicatively closed set § C R.

Clearly a strongly root (resp., n-root, (2,3}-) closed ring is root (resp., n-root, (2,3)-) closed, and a strongly
n-root closed ring (for some n > 2} is also strongly {2,3)-closed (however, the converse fails even for integral
domains). Observe that if a ring R is strongly (2,3)-closed (or strongly n-root closed for some n > 2}, then R
must be reduced. However, a (2,3)-closed ring need not be reduced. The following two examples show that even
for reduced rings, a root (resp., (2,3)-) closed ring need not be strongly root (resp., (2,3)-) closed. The first
example is a subring of a direct product of infinitely many integral domains (¢f. [5, Example 3.5]). The second,
more complicated example, is a subring of a direct product of finitely many integral domains.

Example 3.1. Let n > 1. Then there is a reduced, non-seminormal ring B with infinitely many minimal prime
ideals such that R is root closed {and hence n-root closed and (2,3)-closed) and b™|a™ for some a,b € Z{R) and
all m > n, but bfa in R {(i.e., R is neither strongly n-root closed nor strongly (2,3)-closed).
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Proof. Let K be a field and n > 1. Let R = K(1,1,1,...) + @,., X"K[X] ¢ [l K[X]. It is easy to
verify that R is not seminormal and that T(R) = R, and hence R is root closed. Let g = (X"+10,0,...),

=(X",0,0,...) € R. Then b™|a™ for all m > n, but bfa since (X, fo, fs,...) & R for any {fi}i>2 C K[X].
We next show that R has infinitely many minimal prime ideals. For each j > 1, let Pi={ye®P,., X"K[X]|
the jth-coordinate of y is zero}. It is easy to verify that each P is a prime ideal of R. Also, each P;is a minimal
prime ideal of R by [14, Corollary 2.2]. Hence {P;};>; is an infinite set of minimal prime ideals of R. O

Example 3.2. Let n > 1. Then there is a reduced seminormal ring R with finitely many minimal prime ideals
such that R is root closed (and hence n-root closed and (2,3)-closed) and b™|a” for some a,b € Z (R}, but bfa in
R (i.e., R is not strongly n-root closed).

Proof. Let n > 1 and let D = Zo[X,Y] & Zo[X,Y]. Let R be the subring of D generated by {(1,1), (X" V),
(X771Y,0), (X™72Y,0),..., (XY, 0), (Y,0),(0, X)}. First, we make the following remarks:

(1) (Y"™,0) € R for each m > 1.

(2) (0,X™) € R for each m > 1.

(3) (0,X™Y*)e Rforeachm > 1and s > 1.

(4) (X™Y*,0) € R for each m > 1 and s > 1. To see this: Let m = kn + r with k > 0 and 1 <r<n- 1
Then (X™Y*,0) = (X", Y)¥(X7Y,0)(Y,0)* ! € R.

(5) (X 0} ¢ R for each m > 1.

(6) (0,Y™) ¢ R for each m > 1.

(7) If (h, f) € R for some h, f € Zy[X,Y], then (X™)™ is a term of h for some m >lifandonly if Y™ is a
term of f.

We first show that R is not strongly n-root closed (and hence R is not strongly root closed). Let
a = (XY,0), b = (Y,0) € R. Then b"[a", but bfa since (X,d) ¢ R for any d € Z9[X,Y]. We next show
that R is root closed (and hence R is n-root closed, (2,3)-closed, and seminormal [5, Corollary 3.2]). Since R is
additively regular by Corollary 2.6, we need only show that if a,b € R — Z(R) and b™|a™ for some m > 1, then
blain R. Let a = (hy, f1),b = (h2, f2) € R — Z(R) such that (hi, f1)™ = (ha, f2)™(hs, f3) for some (hs, f3) € R
and m > 1. Observe that hy, fi, ke, f2, hs, and f3 are nonzero elements of Zo[X,Y]. Hence hg = ¢; + ¢3 + ¢ for
some c1 € ZolV, XY, X?Y, X3Y, ... ],c; € Zy[X "], and ¢ € Zy with ¢;(0,0) = c2(0) = 0. Also, fs =d, +dy + ¢
for some d; € Zo[X, VX, Y2X,Y®X,...] and db € Zo[Y] with d4(0,0) = d2(0) = 0. Let ¢ : Zo[X] — Zo[YV/7]
be the ring isomorphism determined by ¢(1) = 1 and ¢(X) = Y/ Observe that w(ez) = da, by remark
(7). Also, observe that if ¢(f) € Z,[Y], then f € Z,[X™], by definition of ¢. Since D is integrally closed,
(R, f1) = (ha, fo)(hy, fs) for some (hy, f1) € D. Hence hy = e; + e5 + ¢ for some ¢, € ZolY, XY, X2V, X%V, .. .]
and e € Zo[X] with €;(0,0) = 2(0) = 0. Also, fy = w; + wy + ¢ for some w; € Lol X, Y X, Y2X,V3X,...]
and wp € ZofY] with w;(0,0) = w2(0) = 0. We need to show that (hy, f4) € R. Since {e1,0) € A, by remarks
(1) and (4), and (0,w;) € R, by remarks (2) and (3), we have (e;,w;) € B. Thus we need only show that
(€2 + c,wz +¢) € R. Since A" = hs and e; € Zo[Y, XV, X%y, .. ],e1(0,0) = 0,e5 € Zo[X], and ¢ € Zo[X7,
we have (e2 +¢)™ = ¢ +¢. Also, since f* = fy and wy € Zo[X, VX, V2X, . Jywi(0,0) = 0,wy € ZyY), and
dy € ZolY], we have (wy + ¢)™ = dy + ¢. Since (p(ex +¢))™ = p((e2 + &)™) = (cy + ¢} =dy + = (wy + )™
and Zo[Y'/"] is a UFD with U{Zo[Y ™)) = {1}, we have p(es +¢) = wa +c € Zo[Y']. Hence ez + ¢ € Zo[X ™,
and thus (es + c,ws +¢) € A. 1

In view of Examples 3.1 and 3.2, we have the following special cases where a root closed ring is strongly root
closed.
Proposition 3.3. Let R be a subring of a direct product of integral domains such that each nonzerc element
of B can be estended to a regular element of R. Furthermore, suppose that if r € U(T(R)), then 2™ € R for
some m > 1. Then R is strongly root tlosed if and only if R is root closed (if and only fUTRY) = U(R), ie,
T{R} = R).
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Proof. We need only show that R is strongly root closed if R is root closed. Suppose that R is root closed and
b"|a” for some nonzero a,b € Z(R) and n > 1. Then a" = b™k for some k € R. Let d and z be regular elements
of R such that dEb and zEa. Hence a = b({d"~ /2"~ 1)k). Since d/z € U(T(R)),(d/z)™ € R for some m > 1,
and R is root closed, we have d/z € R. Hence bla in R. The equivalence of the statement in parentheses follows

from Proposition 2.2. .

Corollary 3.4. Let R be a subring of # direct product of finitely many integral domains. Suppose that if
z € U(T(R)), then z™ € R for somem 2> 1. Then R is strongly root closed if and only if R is root closed (if
and only if U(T(R)) = U(R), i.e., T(R) = R).

Proof. By [5, Lemma 2.5], every nonzero element of R can be extended to a regular element of R. Hence the
proof is completed by Proposition 3.3. 0

The following results are immediate consequences of Proposition 3.3 or Corollary 3.4; so we state them without
proof. An important special case of Corollary 3.6 is when R is reduced with only a finite number of minimal
prime ideals (for example, when R is reduced and Noetherian) and U(T(R)) is a torsion group. Corollary 3.7
also follows from our earlier observation that a direct product of strongly root closed rings is strongly root closed

(¢f. Corollary 4.7).

Corollary 3.5. Let R be a subring of a direct product of integral domains such that each nonzero element of R
can be extended to a regular element of R (for ezample, if R is a direct product of finitely many integral domains).
If T(R) = R, then R is strongly root closed.

Corollary 3.6. Let R be a subring of a direct product of integral domains such that each nonzero element of
R can be extended to a regular element of R (for ezample, if R is a direct product of finitely many integral
domains). If U(T(R)) is a torsion group, then R is strongly root closed if and only if R is root closed (if and
only if T(R) = R).

Corollary 3.7. Let R be a subring of a direct product of finitely many finite fields (i.e., R is a reduced finite
ring). Then R is strongly root closed.

Let R be a subring of a direct product D = [];., D; of integral domains D;, and let z = (z:),y = (y:) € R.
Recall from [5, Section 2] that z and y are of the same type, denoted by z ~y, if z; =0 & y;i =0 foreachi € I.
Our next result is the “root closed” analog of [5, Theorem 2.2].

Proposition 3.8. Let R be a subring of a direct product of integral domains such that each nonzero element of
R can be extended to a reqular element of R (for ezample, if R is a subring of a direct product of finitely many
integral domains). Suppose that if b™|a™ for some a,b € Z(R) and n > 1, then o™ = b"k for some k € R such
that k ~ a. Then R is strongly root (resp., (2,3)-) closed if and only if R is root (resp., (2,3)-) closed.

Proof. We need only show that R is strongly root closed if R is root closed. Suppose that b"]a™ for some nonzero
a,b € Z(R) and n > 1. Then a® = bk for some k € R such that k ~ a. Let d be a regular element of R such
that dEb. Then o = d"k since dEb and k ~ a. Hence a = dc for some ¢ € R since R is root closed. Thus
a = be, so bla. The proof for the (2,3)-closed case is similar, and hence will be omitted. &

We end this section with the following remark which shows that the hypothesis that each nonzero element of
R can be extended to a regular element of R is independent of the equivalence of the root closed and strongly

root closed hypotheses.
Hemark 3.0,

{(a) Let R be as in Example 3.1 with n = 2. Then T'(R) = R, and thus R is root closed, but R is neither
strongly root closed nor seminormal, and some nonzero element of R cannot be extended to a regular

element of A.
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(b) Let K be a field and B = K(1,1,1,...) + @5, XK[X] C [],5, K[X]. Then T(R) = R, and R
is strongly root closed (and hence strongly (2,3)-closed), but some nonzerc element of R cannot be
extended to a regular element of R.

{¢) Let R be as in Example 3.2. Then each element of R can be extended to a regular element of R and R
is root closed, but R is not strongly root closed.

(d) It is well known that a (n-, for n > 2) root closed integral domain is seminormal. More generally, if a
ring I is strongly root closed (and hence root closed) and R has finitely many minimal prime ideals,
then R is seminormal by [5, Corollary 3.2]. However, let R (with K = Z5) be as in [5, Example 2.7(b)]
(see Example 4.1}. Then R is not seminormal, but it is easy to verify that R is strongly root closed (and
hence also strongly (2,3)-closed).

4. STRONGLY ROOTY RINGS AND STRONGLY ROOT CLOSED RINGS

In this section, we generalize the “closedness” concepts of strongly radical ideal and rooty ring for integral
domains, as in [10-12], to internal divisibility concepts in rings with zerodivisors.

Let I be an ideal of an integral domain R with quotient field K. In [10}, I was called strongly radical if
whenever =" € [ for some z € K and n > 1, then 2 € I. In [11], I was called boldly radical if whenever 27 € [
for some z € K and all sufficiently large integers n > 1 (equivalently, 22, 2% € I), then z € I. Also, R was called
rooty if each radical ideal of R is strongly radical. A root closed integral domain is certainly also rooty, but not
conversely (see the paragraph preceding Proposition 4.3). Moreover, R is (2,3)-closed (resp., rooty) if and only
if each {maximal) prime ideal of R is boldly (resp., strongly) radical {11, Theorem 1.3 and Remarks 1.2.2 and
1.2.3]. These concepts were defined for arbitrary rings in [11], but most of the results were stated for integral
domains. For other characterizations of strongly radical and boldly radical ideals, see [12, Theorems 1.1 and 1.2].

In this paper, we call an ideal I of a ring R strongly redical if whenever a™ € b/ for some a,b € Rand n > 1,
then a € bl. If every radical ideal of R is strongly radical, then R is called a strongly rooty ring. We call I boldly
radical if whenever a™ € b™1 for all sufficiently large integers n > 1 (equivalently, a® € b*I,a® € b°I) for some
a,b € R, then a € bl. These “new” definitions are equivalent to our earlier definitions in the integral domain
case. Clearly, strongly radical and boldly radical ideals are radical ideals, and a strongly radical ideal is boldly
radical, but a boldly radical ideal need not be strongly radical.

Observe that an integral domain R is a strongly rooty ring if and only if K is a rooty ring, and that if a ring
E admits a strongly (or boldly) radical ideal, then R must be reduced. We have already observed that a root
closed ring is a rooty ring. The following is an example of a reduced ring R which is a strongly root closed ring
{and hence R is root closed, and also a rooty ring}, but R is not a strongly rooty ring.

Example 4.1. Let R=75(1,1,1,.)4+P,5; XL X[+ {aup1+ - +onynlai € Zoand n > 1} CT],5, Z2[X]=T,
where y,, = X{e, + e and e, € T has a 1 in the mth slot and 0 elsewhere {this is [5, Example 2.7(b)} with
K = Z3). Then R is not seminormal, T{R) = R {and hence H is root closed and rooty), and it is easy to verify
that R is a strongly root closed ring. Let ¢ = (X?%,0,0,...) € R. Then I = cR is a radical ideal of R. Now,
let b = c and a = (X%,0,0,...) € R. Then a® € V’I,a® € ¥’I, but a ¢ bl since (X, fy, f5,...) & I for any
{fn}n>2 C ZolX]. Hence I is not boldly radical, and thus not strongly radical. Hence R is not a strongly rooty

ring.

In the following result, we show that a strongly rooty ring is seminormal. Example 4.1 above shows that a
strongly root closed (and hence strongly (2,3)-closed) ring need not be seminormal. Although a seminormal ring

3

is {2,3)-closed, we do not know if a seminormal ring is necessarily strongly (2,3)-closed.

Proposition 4.2. Let R be a ring such that every radical ideal of R is boldly radical. Then R is seminosrmal
{and hence (8,3)-closed). In particular, a strongly rooty ring is seminormal.
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Proof. Since R is reduced, we may view R as a subring of a direct product of integral domains. Suppose that
a? = b® for some a,b € R. Hence a ~ band a? € b* Rad(bR), a® € b Rad(bR). Thus a = bk for some k € Rad(bR).
Since a ~ b,k € Rad(bR), and a = bk, we have k ~ a. Thus R is seminormal by [5, Theorem 2.2]. ]

By [11, Example 2.1}, a (2,3)-closed integral domain need not be a (strongly) rooty ring. Also, by
[11, Example 1.6}, a quasilocal integral domain which is a (strongly) rooty ring need not be a (strongly) root
closed ring. (A simpler such example, namely R = R+ XC[X], is given in [12, Example 2.13].) See [12] for other
results on quasilocal rooty domains. We ask the reader to compare the following result with [11, Proposition 1.7}
and [12, Theorem 2.1}.

Proposition 4.3. Let R be a strongly rooty ring. If R is not quasilocal, then R is a strongly root closed ring
{and hence R is root closed).

Proof. Let M and N be distinct maximal ideals of B. Let a € M, b € N such that a + b = 1. Suppose
that ¢ = d"k for some ¢,d,k € R, and n > 1. Hence (ca)™ = d"ka™ and (ch)" = d™kb". Since M and N
are each strongly radical and @ € M,b € N, we have ca = df and cb = dh for some f € M,h € N. Thus
c=cla+b)=ca+ch=df + dh = d(f + h). Hence R is strongly root closed. O

If I is a strongly (resp., boldly) radical ideal of R in the sense of [10~12], and J is a radical ideal of R such
that J C I, then J is strongly (resp., boldly) radical in the sense of [10-12] (see [11, Remarks 1.2.3 and 1.2.2]).
The following is an example of a ring R that admits a strongly (resp., boldly) radical ideal I such that J is a
radical ideal of R and J C I, but J is not strongly (resp., boldly) radical.

Example 4.4. Let R be as in Example 4.1. Then R is a quasilocal ring with maximal ideal Z(R). It is easy to
check that I = Z(R) is a strongly (resp., boldly) radical ideal of R, but J = (X%2,0,0,...)R is a radical ideal of
R which is not strongly (resp., boldly) radical by Example 4.1

If R is an integral domain with quotient field K, then an ideal I of R is a strongly radical ideal of R if and
only if I is a radical ideal of the overring I : I = {z € K|zI C I} and I : I is root closed (see [10, Proposition
1.4}, [12, Theorem 1.1]). The following is an example of a ring R that admits a radical ideal I such that I is a
radical ideal of I : I = {z € T(R)|zI C I} and I : I is a strongly root closed ring (and hence root closed), but I
is not a strongly radical ideal of R.

Example 4.5. Let R be as in Example 4.1 and [ = (X?,0,0,...)R. Then [ is a radical ideal of R and since
I:I=R,Iis aradical ideal of I : I. Also, I : I = R is a strongly root closed ring (and hence is root closed),
but I is not a strongly radical ideal of R by Example 4.1.

We end this section by showing that the concepts introduced in this and the previous section are all equivalent
for reduced zero-dimensional commutative rings. Recall that a ring R is von Neuwmann regular if for each a € R,
there is a b € R with aba = a; equivalently, if and only if R is reduced and zero-dimensional [14, Remark,
page 5]. It is well known that a von Neumann regular ring R is root closed (since T(R) = R) and seminormal.
Example 4.1 shows that our next result does not extend to rings with dim(R} > 1. Also, conditions (2)~(6) of
Proposition 4.6 are not equivalent for one-dimensional integral domains {see [16, Examples 7.1]).

Proposition 4.8. The following statements are equivalent for a zero-dimensional ring R.

(1} R is reduced (i.e., von Neumann regular).

{2) R is seminormal.

(3) R is strongly rooty.

{4) R is strongly root closed.

(5} R is strongly n-root closed for some integer n 2> 2.

(6) R is strongly {2,5)-closed.
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Proof. We have already observed that any of conditions (2)—(6) implies that R is reduced, that a von Neumann
regular ring is seminormal, and that (4) = (5) = (6). Note that (3) = (4) by Proposition 4.3, since a reduced
zero-dimensional quasilocal ring is a field; thus we need only show that (1) = (3).

(1) = (3): Let I be a radical ideal of a von Neumann regular ring R, and suppose that a® € 6"/ for some
a,b € Rand n > 1. By [14, Corollary 3.3], a = eu and b = fv for some idempotents e, f € R and u,v € u{R}.
Thus eu™ € fv"] = fI = bl, and hence a = eu € bI. Thus [ is a strongly radical ideal, and hence R is strongly
rooty. 0

Corollary 4.7. A finite ring R is seminormal (resp., strongly rooty, strongly root closed, strongly n-root closed
for some n > 2, strongly (2,3)-closed) if and only if it is reduced (i.e., a direct product of finitely many finite
fields).

Corollary 4.8. Let n.> 2. Then Ly, is seminormal (resp., strongly rooty, strongly root closed, strongly d-root
closed for some d > 2, strongly (2,3)-closed) if and only if n is square-free.

5. ALMOST STRONGLY ROOTY RINGS

In this section, we give another generalization of root closure for rings with zerodivisors. In these definitions,
we replace b"[a™ for a,b € R by b™[a™ for a € R,b € R — Nil(R).

Let n > 1 be an integer. A ring R is said to be almost strongly n-root closed if whenever b”|a” for some
a € R,b € R~ Nil(R), then bla; and R is almost strongly root closed if it is almost strongly n-root closed for
all n > 1. We define R to be almost strongly (2,3)-closed if whenever *|a® and b%|a® (equivalently, b"|a™ for
all sufficiently large integers n > 1) for some a € R,b € R — Nil(R), then bla. An ideal I of R is called almost
strongly radical if whenever o™ € "I for some a € R,b € R — Nil(R), and n > 1, then a € bI; and I is called
almost boldly radical if whenever a™ € b"I for all sufficiently large integers n > 1 (equivalently, a? € b and
a® € b1 ) for some a € R,b € R— Nil(R), then a € bl. If every radical ideal of R is almost strongly radical, then
R is called an almost strongly rooty ring. Clearly, almost strongly and almost boldly radical ideals are radical
ideals, and an almost strongly radical ideal is almost boldly radical. Also, recall that an ideal T of R is called
divided if I is comparable, under inclusion, to every principal ideal of R.

Clearly, an almost strongly root closed (resp., almost strongly n-root closed, almost strongly (2,3)-closed,
almost strongly rooty) ring is a root closed (resp., n-root closed, (2,3)-closed, rooty) ring.

A strongly root closed (resp., strongly n-root closed, strongly (2,3)-closed, strongly rooty) ring is an almost
strongly root closed (resp., almost strongly n-root closed, almost strongly (2,3)-closed, almost strongly rooty)
ring, and these concepts agree for reduced rings. However, an almost strongly root closed (resp., almost strongly
n-root closed, almost strongly (2,3)-closed, almost strongly rooty) ring need not be a strongly root closed (resp.,
strongly n-root closed, strongly (2,3)-closed, strongly rooty) ring (see Remark 5.17(a)).

A direct product of strongly (n-jroot (resp., strongly (2,3)-) closed rings is again strongly (n-)root (resp.,
strongly (2,3)-) closed; however, this need not hold for almost strongly (n-)root (resp., almost strongly (2,3)-)
closed rings (see Corollary 5.18).

If R is an integral domain, then Nil(R) = {0} is a divided ideal. Thus, to generalize concepts from integral
domains to rings with zerodivisors, it is natural to assume that Nil(R) is a divided ideal and replace b # 0 by
b ¢ Nil(R). We will see that the divisibility conditions we have defined in this section all force Nil(R) to be
divided. An important consequence of our next result is that if Ni[(R) is nonzero and divided, then it is the
unigue minimal prime ideal of K.

Proposition 5.1. A nonzero divided radical ideal I of a ving R is a prime ideal of R. In particular, if N (R}
is ¢ nonzerv divided ideal of B, then Nil{R} is ¢ prime ideal of A.
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Proof. Suppose that [ is not prime. Then there are r,y € R — I with zy € I. Thus z? ¢ I, and hence I ¢ z°R,
since [ is a divided radical ideal. Thus zy = z%d for some d € R, and hence y — zd g I, sincexde Iandy¢].
Thus I C (y — zd)R, since [ is divided, and hence zI C z(y — zd)R = {0}. Let 0 # i € I C z2R. Then i = 22
for some r € R, and zr € I. Thus i = z(rz) = 0, a contradiction. Hence I must be a prime ideal of R. 0
Corollary 5.2. Suppose that Nil(R) is divided. Then either Nil(R) = {0} (i.e., R is reduced) or 0 and 1 are
the only idempotents of R.

The next two results also hold for almost boldly radical ideals.

Proposition 5.3. Suppose that R admits an almost strongly radical ideal J of R. Then N i{R) is a divided
ideal.

Proof. Let a € Nil(R) and b € R ~ Nil(R). Since a™ € b"J for some n > 1 and J is almost strongly radical,
a € bJ. Thus Nil(R) C bJ C bR. Hence Nil(R) is divided. O

In view of Propositions 5.1 and 5.3, we have the following three corollaries.

Corollary 5.4. Suppose that Nil(R) is an almost strongly md:cal ideal of R. Then either N zl(R) = {0} (i.e.,
R is reduced) or Nil(R) is a divided prime ideal.

Corollary 5.5. Let R be an almost strongly rooty ring. Then either Nil(R) = {0} (i.e., R is reduced) or N i(R)
s a divided prime ideal.

Corollary 5.6. Let R be a rmg wztfz Nil(R) # {0}. Then Nil(R) is a divided prime ideal of R if and only if
Nil(R) is an almost strongly radical ideal of R.

Proof. We need only prove (=). Suppose that a” € b®Nil(R) for some a € R,b € R— Nil(R), and n > 1. Then
a € Nil(R) since Nil(R) is a radical ideal. Since Nil(R) is divided and b ¢ Nil(R), we have a € N il(R) C bR.
Thus a = br for some r € R. Since Nil(R) is prime by Proposition 5.1 and b ¢ Nil (R), we have r € Nil(R), and

thus a = br € bN il(R). Hence Nil(R) is almost strongly radical. 0

Corollary 5.7. The following statements are equivalent for a ring R.

(1) Nil(R) is divided.
(2) Nil(R) is almost strongly radical.
(3) R admits an almost strongly radical ideal.

Proof. (1) = (2) If Nil(R) = {0}, then Nil(R) is certainly almost strongly radical. If Nil(R) #£ {0}, then

Nil(R) is almost strongly radical by Proposition 5.1 and Corollary 5.6. (2) = (3) is clear, and (3) = {1) follows,

by Proposition 5.3 i

Proposition 5.8. Suppose that Nil{R) is a divided ideal of R. Then a radical ideal | of R is an almost strongly
(resp., boldly) radical ideal of R if and only if I/Nil(R) is a strongly (resp., boldly) radical ideal of R/Nil(R).

Proof. By Proposition 5.1, we may assume that Nil(R) is a prime ideal. Let N = Nil (R}, J = I/N, and
D = R/N. We give the proof for strongly radical ideals; the boldly radical case is left to the reader.

Suppose that [ is an almost strongly radical ideal of R. Suppose that o™ + N € (6" + NYJ for some
a€ Rbe R—N,andn > 1 Thusa” = b+ w for somei €  and w € N. Since b ¢ N,w € N, and N
is a divided prime ideal, w = b"d for some d € N. Hence a" = b"(i + d). Since i € [ and d € N C I, we have
i-+d € I. Since [ is an almost strongly radical ideal, a = bj for some j € . Hence a + N = {(b+ NYj+ N}, and
thusa+ N € (b+ N)J.
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Conversely, let I be a radical ideal of R such that J = I/N is a strongly radical ideal of D = R/N. We need
to show that I is an almost strongly radical ideal of R. Suppose that o™ € b"I for some a € R,b€ R — N, and
n > 1. Hence a” + N € (0" + N)J. Thus a+ N € (b+ N)J since J is a strongly radical ideal of ). Hence
a=bi+wforsomei€l andw € N. Since b N,w € N, and N is a divided prime ideal of R, we have w = bd
for some d € N. Hence a = b(i + d). Since i +d € I,a € bl. Thus I is an almost strongly radical ideal of R. [J

We next relate the two different ways to generalize the “closedness” concepts from integral domains to rings
with zerodivisors. The first result is an immediate consequence of Corollary 5.5 and Proposition 5.8.

Proposition 5.9. A ring R is almost strongly rooty if and only if Nil{R) is divided and R/Nil(R) is strongly
rooly.

Proposition 5.10. A ring R is almost strongly (2,3)-closed if and only if Nil(R) is divided and R/Nil(R) is
strongly (2,3)-closed.

Proof. Let N = Nil(R). Suppose that R is almost strongly (2,3)-closed. Let a € N and b ¢ N. Then bla™ for
all sufficiently large n > 1, and hence bld—; Thus N C bR, and hence N is divided. Suppose that (b+N)*|(a+N)?
and (b + N)*|(a + N)? in R/N. We may assume that b ¢ N. Then cb® = a® + z and db® = a® + y for some
¢,d € R and 7,94 € N. Since N is divided, we have z,y € b°R. Thus b*|a® and b*lad in R with b € N, so bla
since R is almost strongly (2,3)-closed. Hence (b+ N)|(a + N), and thus R/N is strongly (2,3)-closed.

Conversely, suppose that N = Nil(R) is divided and R/N is strongly (2,3)-closed. Suppose that b%|a® and
b*|a® in R with b ¢ N. Then (b+ N)?|(a+ N)? and (b+ N)*|(a+ N)® in R/N, and hence (b+ N)|(a + N) since
R/N is strongly (2,3)-closed. Thus cb = a + n for some n € N. Since N is divided, we have n € bR, and thus
bla. Hence R is almost strongly (2,3)-closed. O

Proposition 5.11. A4 ring R is almost strongly root closed (resp., n-root closed for some n > 2) if and only if
Nil(R) is divided and R/Nil(R) is strongly root closed (resp., n-root elosed).

Proof. The proof is similar to that of Proposition 5.10, and hence will be omitted. i

Recall from [17] that an integral domain R with quotient field K is called a pseudo-valuation domain (PVD}
“in case each prime ideal P of R is strongly prime, in the sense that zy € P,z € K,y € K implies that either
z € Pory€ P. In [6], the study of pseudo-valuation domains was generalized to the context of arbitrary rings
(possibly with nonzero zerodivisors). Recall from [6] that a prime ideal P of R is said to be strongly prime
(in R) if P and bR are comparable for all a,b € K. If each prime ideal of R is strongly prime, then R is
called a pseudo-valuation ring (PVR). Examples of PVRs include PVDs and chained rings (i.e., any two ideals
are comparable under inclusion), and a PVR is quasilocal [6, Lemma 1]. The two concepts agree for integral
domains.

Recently, [9] gave another generalization of PVDs to the context of arbitrary rings. Recall from [18, Proposition
1.1(6)] that a ring Ris a ®-PVR if and only if Nil(R) is a divided prime ideal of R and for each a,b € R— Nil(R},
either bla or albc for each nonunit ¢ € R (for the original definition of ®-PVRs, see [9]). Observe that a PVR is
a $-PVR by [9, Corollary 7(3)], but a $-PVR need not be a PVR by [18, Theorem 2.6]. Also, observe that a
PVD is a strongly rooty ring, and hence it is an almost strongly rooty ring. We have the following result.

Proposition 5.12. Let R be o ®-PVR. Then R is an almost strongly rooty ring.
Proof. Since Nil(R) is a divided prime ideal of R by [18, Proposition 1.1(6}], in light of Proposition 5.9 we need
only show that D = R/Nil(R) is a strongly rooty ring. Since for each a,b € R, either alb or blac for each nonunit

¢ of R by [18, Proposition 1.1(6)], for each d,e € D either dle or eldm for each nonunit m of D. Hence D is a
PVD by [6, Theorem 5]. Thus D = R/Nil(R) is a strongly rooty ring. 7
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Corollary 5.13. Let R be a PVR. Then R is an almost strongly rooty ring. In particular, a chained ring is an
almost strongly rooty ring.

Proof. Since a PVR is a $-PVR by [9, Corollary 7(3)] and a chained ring is a PVR, the claim is now clear by

Proposition 5.12. ]

Note that a -PVR need not be almost strongly root closed since a PVD need not be root closed (for example,
R =R+ XC[X] is a PVD which is not root closed).

We next show that the concepts defined in this section are all equivalent if R is zero-dimensional. Recall that
a ring R is w-regular if for each a € R, there is a b € R and an‘integer n > 1 such that a™ba™ = a". In fact, a
ring is w-regular if and only if it is zero-dimensional [14, Theorem 3.1]. Thus a reduced ring is n-regular if and

only if it is von Neumann regular.

Proposition 5.14. The following statements are equivalent for a zero-dimensional ring R (i.e., a w-regular
ring).

(1) Either R is reduced or quasilocal (with mazimal ideal Nil(R)).

(2) Nil(R) is divided.

(3) R is almost strongly rooty.

(4) R is almost strongly root closed.

(5) R is almost strongly n-root closed for some integer n > 2.

(6) R is almost strongly (2,8)-closed.

Proof. If R is reduced, then Nil(R) = {0} is divided and the statements (3)-(6) are equivalent by Proposition 4.6.
Suppose that R is not reduced, i.e., Nil(R) # {0}. Then any of statements (1)~(6) implies that Nil(R) is divided.
Conversely, if Nil(R) is divided, and hence prime by Proposition 5.1, then R is quasilocal. Hence R/Nil(R) is a
field; so statements (3)—(6) are all satisfied by Propositions 5.9, 5.10, and 5.11. Thus statements {1)~{6) are all

equivalent if K is zero-dimensional. 0

Easy examples show that the above conditions need not be equivalent if dim(R) > 1.

Note that a finite ring R is always n-root closed, root closed, (2,3)-closed, and rooty since T(R) = R. However,
by Corollary 4.7, a finite ring R is strongly n-root closed (for some n > 2), strongly root closed, strongly (2,3)-
root closed, strongly rooty, or seminormal if and only if it is reduced (i.e., a direct product of finitely many finite

fields).

The following results follow directly from Proposition 5.14, since a finite ring is zero-dimensional.
Corollary 5.15. A finite ring R is almost strongly rooty (resp., almost strongly n-root closed (for some n > 2),
almaost strongly root closed, almost strongly (2,3)-closed) if and only if either R is reduced (i.e., a direct product
of finitely many finite fields) or R is quasilocal.
Corollary 5.16. Let n > 2. Then Z,, is almost strongly rooty (resp., almost d-root closed (for some d > 2},
almost strongly root closed, almost strongly (2,3)-closed) if and only if either n is square-free or n = p™ for some

prime pand m > 1.
Remark 5.17.

(8} R =174 is almost strongly root closed (resp., almost strongly (2,3)-closed, almost strongly rooty). How-
ever, R is not reduced, and thus R is not strongly root closed (resp., strongly (2,3)-closed, strongly

rooty ).
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{&) Unlike the case for integral domains, observe that if each maximal ideal of R is an almost strongly
radical ideal, then E need not be an almost strongly rooty ring by Example 4.4. (Note that the ring in
Example 4.4 is reduced.)

In view of Remark 5.17(b), we have the following result.

Proposition 5.18, Let R be a ring with Nil(R) # {0}. Then R is an almost strongly rooty ring if end only if
each mazimal ideal of R is an almost strongly radical ideal.

Proof. Suppose that R is an almost strongly rooty ring. Then it is clear that each maximal ideal of R is an
almost strongly radical ideal. Conversely, assume that each maximal ideal of R is an almost strongly radical
ideal and Nil(R) is nonzero. First observe that Nil{R) is a prime ideal of R by Propositions 5.3 and 5.1. Let
~ be a radical ideal of R, and choose a maximal ideal M of R such that I C M. Suppose that o™ € b"] for some
. a€ R,be& R~ Nil(R), and n > 1. Thus a® = b" for some i € I. Hence a = bm for some m € M, and thus
(i - m™) = 0. We need to show that m € I. Since b* ¢ Nil(R) and Nil(R) is prime, i — m”™ € Ni(R) C I.
Hence m™ € I, and thus m € [. ,, O

A proof similar to that of Proposition 5.18 shows that if each maximal ideal of R is alimost boldly radical and
Nil(R) # {0}, then each radical ideal of R is almost boldly radical. The following result also follows from the
proof of Proposition 5.18.

Corollary 5.19. Let R be a ring such that Nil(R) is a divided prime ideal of R. Let I and J be radical ideals
of R such that J C I and I is an almost strongly (resp., boldly) radical ideal of R. Then J is an almost strongly
(resp., boldly) radical ideal of R.

Our final result is the analog of Proposition 4.3 for almost strongly rooty rings. Recall that, even for integral
domains, a quasilocal (almost strongly) rooty ring need not be (almost) strongly root closed.

Proposition 5.20. Suppose that R is an almost strongly rooty ring. If R is not quasilocal, then R is an almost
strongly root closed ring.

Proof. The proof is similar to that of Proposition 4.3; we leave the details to the reader. O
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